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Abstract: Objective: Cardiovascular effects of thyroid hormones may be measured through heart
rate variability (HRV). We sought to determine the impact of hyperthyroidism on HRV. Design: A
systematic review and meta-analysis on the impact of hyperthyroidism on HRV. Methods: PubMed,
Cochrane, Embase and Google Scholar were searched until 20 August 2021 for articles reporting
HRV parameters in untreated hyperthyroidism and healthy controls. Random-effects meta-analysis
was stratified by degree of hyperthyroidism for each HRV parameter: RR intervals (or Normal-to-
Normal intervals—NN), SDNN (standard deviation of RR intervals), RMSSD (square root of the
mean difference of successive RR intervals), pNN50 (percentage of RR intervals with >50 ms of
variation), total power (TP), LFnu (low-frequency normalized unit) and HFnu (high-frequency), VLF
(very low-frequency), and LF/HF ratio. Results: We included 22 studies with 10,811 patients: 1002
with hyperthyroidism and 9809 healthy controls. There was a decrease in RR (effect size = −4.63,
95% CI −5.7 to −3.56), SDNN (−6.07, −7.42 to −4.71), RMSSD (−1.52, −2.18 to −0.87), pNN50
(−1.36, −1.83 to −0.88), TP (−2.05, −2.87 to −1.24), HFnu (−3.51, −4.76 to −2.26), and VLF power
(−2.65, −3.74 to −1.55), and an increase in LFnu (2.66, 1.55 to 3.78) and LF/HF ratio (1.75, 1.02 to
2.48) (p < 0.01). Most parameters had ES that was twice as high in overt compared to subclinical
hyperthyroidism. Increased peripheral thyroid hormones and decreased TSH levels were associated
with lower RR intervals. Conclusions: Hyperthyroidism is associated with a decreased HRV, which
may be explained by the deleterious effect of thyroid hormones and TSH. The increased sympathetic
and decreased parasympathetic activity may have clinical implications.
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1. Introduction

The thyroid gland and the autonomic nervous system are closely linked by their
control center, the hypothalamus, and by their effects on the cardiovascular system [1,2].
Hyperthyroidism is a common global health problem and a risk factor for cardiovascular
mortality [3]. One of the main complications of hyperthyroidism is cardiac arrhythmias,
most often supraventricular, and may be caused by sympathovagal imbalance. Indeed,
the clinical manifestations of hyperthyroidism (tachycardia, palpitation, systolic arterial
hypertension) suggest β-adrenergic stimulation and dysautonomia [4–7]. Dysautonomia
means a change in the function of the autonomic nervous system can negatively affect the
health of a person [8]. Sympathovagal imbalance is associated with an increased risk of
ventricular arrhythmias and cardiac mortality [9,10], which can be measured by the study
of heart rate variability (HRV). HRV is the variation between two consecutive heartbeats re-
lated to the continuous interaction between the two arms of the autonomic nervous system,
sympathetic and parasympathetic [11]. HRV is a sensitive, quantitative and non-invasive
tool for the study of autonomic nerve function [12–14]. High HRV suggests an adaptable
and dynamic autonomic nervous system [15]. Low HRV is a marker of cardiovascular
risk and represents an abnormal or restricted ability of the autonomic nervous system to
maintain homeostasis [16,17]. Although the evaluation of HRV in hyperthyroidism has
been assessed in several studies, conflicting results have been reported. Indeed, the degree
and type of autonomic imbalance and its contribution to cardiovascular abnormalities in
hyperthyroidism are not fully understood [18]. These conflicting results may be partly
explained by variation in patient demographic profiles and differences in disease type,
severity and duration. Many studies have shown a tendency for HRV depression with an
impaired cholinergic reserve, providing a logical explanation for the increased sympathetic
activity in hyperthyroidism. If these results are reproducible, it may contribute to the
understanding of the susceptibility to cardiac arrhythmias in hyperthyroidism and indicate
possible early therapeutic intervention. In addition, there is no consensus on the decreased
levels of HRV parameters in hyperthyroidism. Two biochemical entities are distinguished:
overt hyperthyroidism, with a prevalence of 0.5% of the general population [19], and
subclinical hyperthyroidism, with 1.8% [20]. Few studies have comprehensively evaluated
the role of the most common variables, such as age, sex, body mass index (BMI), blood
pressure or biochemical thyroid function on HRV parameters [21,22].

Therefore, we aimed to conduct a systematic review and meta-analysis of the impact of
untreated overt or subclinical hyperthyroidism on HRV parameters. A secondary objective
was to identify the most frequently reported explanatory variables.

2. Methods
2.1. Literature Search

We reviewed all studies measuring HRV in patients with untreated hyperthyroidism
and healthy controls. We searched the main article databases (PubMed, Cochrane Library,
Embase and Google Scholar) with the following keywords: (“hyperthyroidism” OR “hy-
perthyroid”) AND (“heart rate variability” OR “HRV”) until 20 August 2021. All articles
compatible with our inclusions criteria were included, independently of article language
and years of publication. To be included, studies had to describe our main primary outcome
i.e., the measurement of HRV parameters in untreated hyperthyroid patients and healthy
controls. We imposed no limitation on the regional origin or the nature of the control
group. We excluded studies that assessed the effects of treated hyperthyroidism in adults
on HRV parameters, animal studies, studies in children, conferences, congresses, seminars
and studies without frequency or time domains for HRV parameters or without controls.
Studies needed to be primary research. In addition, reference lists from all publications
meeting the inclusion criteria were manually searched to identify any further studies that
were not found with the electronic search. Ancestry searches were also completed on
previous reviews to locate other potentially eligible primary studies. The search strategy is
presented in Figures 1 and S1. Two authors (VB and RB) conducted the literature searches,
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reviewed the abstracts and articles independently, checked suitability for inclusion, and
extracted the data. When necessary, disagreements were solved with a third author (FD).
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Figure 1. Flow chart. We followed the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines for the search strategy. HRV: Heart rate variability.

2.2. Data Extraction

The primary endpoint was the analysis of HRV parameters in untreated hyperthyroid
patients and in healthy controls. Traditionally, HRV is measured by linear methods [12],
and most studies dealing HRV and dysthyroidism used linear HRV measurement methods.
In the time domain, we analyzed RR intervals (or normal-to-normal intervals—NNs),
standard deviation of RR intervals (SDNN), percentage of adjacent NN intervals differing
by more than 50 ms (pNN50) and the square root of the mean squared difference of
successive RR intervals (RMSSD). The time domain of HRV can be decomposed into its
frequency components by the spectral analysis technique, either with the fast Fourier
transform algorithm or with autoregressive modeling [12]. This is analogous to a prism
that refracts light into its wavelength components [12]. In the spectral domain, we analyzed
the total power (TP), low frequency (LF, 0.04 ± 0.15 Hz), high frequency (HF, 0.15 ± 0.4 Hz)
and very low frequency (VLF, 0.003 ± 0.04 Hz), and the LF/HF ratio. Power is the
energy found in a frequency band [23]. LF and HF powers are absolute powers, reported
in units of ms2 (square milliseconds). LFnu and HFnu are normalized powers, called
relative powers, in the LF and HF bands, comprising a derived index that is calculated by
dividing LF or HF by an appropriate denominator representing the relevant total power:
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LFnu = LF/(LF + HF) and HFnu = HF/(LF + HF). These normalized powers allow direct
comparison of the frequency domain measurements of two patients despite a large variation
in specific band power and total power [24]. LF power represents both sympathetic and
parasympathetic activity and is associated with SDNN, but LFnu emphasizes the control
and balance of cardiac sympathetic behavior [12]. HF power and HFnu represent the most
efferent parasympathetic activity [25] and are associated with RMSSD and pNN50 [23].
As for SDNN, both sympathetic and parasympathetic activities contribute to VLF with
uncertainty about the physiological mechanisms responsible for activity in this band [26].
The LF/HF ratio is the most sensitive indicator of sympathovagal balance [12], which
was also calculated and reported in this meta-analysis. Secondary outcomes included
hyperthyroidism characteristics (duration and etiology of hyperthyroidism, free thyroxine—
fT4, free triiodothyronine—fT3, thyroid-stimulating hormone—TSH), clinical parameters
(BMI, blood pressure, treatments, other diseases), electrical measures such as heart rate,
and sociodemographic parameters (age, sex, smoking).

2.3. Quality of Assessment

We used the Scottish Intercollegiate Guidelines Network (SIGN) criteria to check
the quality of included articles with the dedicated evaluation grids. For clinical trials,
checklists consist of 10 items if randomized and 7 items if non-randomized, based on
the main causes of bias [27]. We also used the SIGN score for cohort and cross-sectional
studies, in two sections: design of the study (14 items), and overall evaluation (3 items).
There were 4 possibilities of answers (yes, no, can’t say or not applicable) (Figure S2). We
also used the “STrengthening the Reporting of OBservational studies in Epidemiology”
(STROBE—32 items/sub-items) for cohort and cross-sectional studies [28] and the Con-
solidated Standards of Reporting Trials (CONSORT—37 items/subitems) for randomized
trials [29]. We attributed one point per item or sub-item, to achieve a maximal score of 32
or 37, respectively, then converted this into a percentage.

2.4. Statistical Considerations

We used Stata software (v16, StataCorp, College Station, TX, USA) for the statistical
analysis [30–34]. Main characteristics were synthetized for each study population and
reported as mean ± standard deviation (SD) for continuous variables and number (%)
for categorical variables. When data could be pooled, we conducted random effects
meta-analyses (DerSimonian and Laird approach) for each HRV parameter comparing
patients with untreated hyperthyroidism with healthy controls [35]. A negative effect
size (ES, standardized mean differences—SMD) [36] denoted lower HRV in patients than
in controls. An ES is a unitless measure, centered at zero if the HRV parameter did not
differ between hyperthyroidism patients and controls. An ES of −0.8 reflects a large effect
i.e., a large HRV decrease in patients compared to controls, −0.5 a moderate effect, and
−0.2 a small effect. Then, we conducted meta-analyses stratified on biochemical status of
hyperthyroidism, subclinical or overt. We evaluated heterogeneity in the study results by
examining forest plots, confidence intervals (CI) and I-squared (I2). I2 is the most common
metric to measure heterogeneity between studies, ranging from 0 to 100%. Heterogeneity
is considered low for I2 < 25%, modest for 25 < I2 < 50%, and high for I2 > 50%. We also
searched for potential publication bias by examining funnel plots of these meta-analyses.
We verified the strength of our results by conducting further meta-analyses after exclusion
of studies that were not evenly distributed around the base of the funnel. When possible
(sufficient sample size), meta-regressions were proposed to study the relationship between
each HRV parameter, and clinically relevant parameters (age, sex, blood pressure, BMI),
hyperthyroidism status (subclinical or overt) and biological relevant parameters (fT3, fT4,
TSH). Results are expressed as regression coefficients and 95% CI. p-Values less than 0.05
were considered statistically significant.
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3. Results

An initial search produced a possible 638 articles (Figure 1). Removal of duplicates
and use of the selection criteria reduced the number of articles reporting the evaluation of
HRV in untreated hyperthyroidism to 22 articles [37–58]. All included articles were written
in English.

Among the 22 studies included, 15 were cross-sectional [41,42,44–50,53–58], five were
prospective [37–40,51], one was retrospective [52] and one was a randomly controlled trial
(RCT) [43]. Included studies were published from 1996 to 2019 and conducted across
four continents (Europe—11 studies, Asia—eight studies, America—two studies, Africa—
one study). All included articles aimed to compare HRV between patients with untreated
hyperthyroidism and controls without hyperthyroidism [37–58].

Sample sizes ranged from 20 [38,50,54] to 8759 [52], for a total of 10,811 patients: 1002
with untreated hyperthyroidism and 9809 healthy controls.

Thyroid function was described clinically and biologically in all studies. Twelve studies
included overt hyperthyroidism [37–42,47–49,54,56,58], six subclinical [44,45,50,52,55,57],
and four both [43,46,51,53]. Most studies included newly diagnosed and untreated hyper-
thyroid patients before initiation of the treatment [37–42,47–50,54,56,57].

Recording of HRV measurements was ambulatory, spontaneous breathing with normal
daily activity in all studies. Most studies used ECG, achieved in a resting supine position,
to determine HRV [37,38,43,46–49,52,55–57] between four [48] and 30 min [40–42], except
eight studies using a 24 h Holter-ECG [39,44,45,50,51,53,54,58]. Parameters reported were
both time and frequency domains in most studies, except five studies that reported only
time domain [41,43,44,47,51] and one only frequency domain [55].

More details on study characteristics (Figure S3), aims and quality of articles, inclusion
and exclusion criteria, characteristics of population, characteristics of hyperthyroidism, and
HRV measurements and analysis are described in Figure S4.

3.1. Meta-Analyses of HRV Values in Untreated Hyperthyroidism

The main results of the meta-analysis are presented in Figure 2. Compared with
healthy controls, we noted strong evidence (p < 0.001) that hyperthyroid patients had
significantly lower RR intervals (ES = −4.63, 95% CI −5.70 to −3.56), SDNN (−6.07, −7.42
to −4.71), RMSSD (−1.52, −2.18 to −0.87), pNN50 (−1.36, −1.83 to −0.88), TP (−2.05,
−2.87 to −1.24), LF power (−1.18, −1.82 to −0.54), HF power (−1.75, −2.51 to −0.99),
HFnu (−3.51, −4.76 to −2.26) and VLF power (−2.65, −3.74 to −1.55), and higher LFnu
(2.66, 1.55 to 3.78) and LF/HF ratio (1.75, 1.02 to 2.48) (Figure S5).

3.2. Meta-Analysis Stratified by Subclinical or Overt Status

In comparison to healthy controls, the following HRV parameters were decreased in
both overt hyperthyroidism and in subclinical hyperthyroidism, respectively: RR-intervals
(ES = −6.97, 95% CI −9.07 to −4.88, and −0.98, −1.79 to −0.16), SDNN (−7.87, −10.08
to −5.67, and −3.45, −5.28 to −1.62), pNN50 (−1.64, −2.48 to −0.8, and −1.12, −1.86 to
−0.37), LF power (−1.32, −2.27 to −0.37, and −0.69, −1.31 to −0.07), HF power (−1.99,
−3.12 to −0.86, and −0.96, −1.83 to −0.09), and VLF power (−2.27, −3.47 to −0.73,
and −1.33, −1.96 to −0.71), whereas LFnu increased (3.19, 1.86 to 4.53, and 0.59, 0.02 to
1.17). Most of the aforementioned parameters had ES that was twice as high in overt
compared to subclinical hyperthyroidism. Some HRV parameters were only modified in
overt hyperthyroidism: lower RMSSD (−1.87, −2.92 to −0.82), TP (−2.05, −2.87 to −1.24)
and HFnu (−4.24, −5.75 to −2.74), and higher LF/HF ratio (1.75, 1.02 to 2.48), while those
parameters did not differ in subclinical hyperthyroidism (Figure S5). All meta-analyses
had a high degree of heterogeneity (I2 > 80%), except for parameters explored by a few
studies in subclinical hyperthyroidism (LFnu, HFnu, VLF).
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Figure 2. Meta-analysis of HRV parameters of untreated hyperthyroid patients compared with
controls. RR: RR intervals (or normal-to-normal intervals—NNs), SDNN: standard deviation of RR
intervals, pNN50: percentage of adjacent NN intervals differing by more than 50 ms, RMSSD: the
square root of the mean squared difference of successive RR intervals, LF: low frequency, LFnu: low
frequency-normalized units, HF: high frequency, HFnu: high frequency-normalized units, LF/HF
ratio: low frequency/high frequency ratio, VLF: very low frequency.

3.3. Meta-Regressions and Sensitivity Analyses

An increase in fT3 and fT4 was associated with lower RR intervals (coefficient = −0.47,
95% CI −0.71 to −0.22 and −0.10, −0.19 to −0.01, respectively); while an increase in TSH
was associated with higher RR intervals (35.7, 2.53 to 68.9). In addition, patients with overt
hyperthyroidism had lower RR intervals (−6.00, −9.75 to −2.25) than those with subclinical
hyperthyroidism. Age was associated with higher RR intervals (0.35, 0.13 to 0.58), TP (0.35,
0.15 to 0.56) and HFnu (1.13, 0.35 to 1.91), and lower LFnu (−0.75, −1.38 to −0.12) and
LF/HF ratio (−0.30, −0.55 to −0.05). BMI was associated with higher RR intervals (1.69,
0.03 to 3.35), TP (0.41, 0.07 to 0.76), LF power (0.53, 0.19 to 0.86), HF power (0.72, 0.32 to
1.11) and VLF power (2.70, 1.73 to 3.68), and lower LF/HF ratio (−0.69, −1.3 to −0.08). An
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increase in systolic blood pressure was associated with a lower RMSSD (−0.30, −0.50 to
−0.10) (Figures 3 and S6).
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Coefficient (95% CI) p-value

-5 0 5

Figure 3. Meta-regressions of significant factors influencing heart rate variability in untreated hy-
perthyroid patients (exhaustive meta-regressions are presented in Figure S5). RR: RR intervals (or
normal-to-normal intervals—NNs), BMI: body mass index, FT4: free thyroxine, FT3: free triiodothy-
ronine, TSH: thyroid-stimulating hormone, RMSSD: the square root of the mean squared difference
of successive RR intervals, SBP: systolic blood pressure, VLF: very low frequency, LF: low frequency,
LFnu: low frequency-normalized units, HF: high frequency, HFnu: high frequency-normalized units,
LF/HF ratio: low frequency/high frequency ratio.

The meta-analyses were rerun after excluding studies that were not evenly distributed
around the base of the funnel (Figure S7) and showed similar results (data not shown).

4. Discussion

The main results showed a decreased HRV in patients with hyperthyroidism, which
may be explained by the deleterious effect of thyroid hormones and TSH. The increased
sympathetic and decreased parasympathetic activity may have clinical implications. Some
other factors, such as age or BMI, should also be considered in a clinical perspective.

4.1. Deleterious Effects of Thyroid Hyperfunction on HRV

The cardiovascular effects of thyroid hormones occur either directly through nuclear
receptors [4] or indirectly by the sympathoadrenergic system [59]. Excess thyroid hormones
has a direct chronotropic effect on the sinus node [60,61]. Changes in HRV are not only re-
lated to chronotropic effects. For example, propanolol is one of the most effective treatments
for heart rate and did not alter HRV parameters [62]. Hyperthyroidism is characterized by a
hyperkinetic state, similar to that induced by catecholamine excess [6], but serum and urine
catecholamine levels are normal or decreased in hyperthyroidism [63,64]. The increased
density and sensitivity of β-adrenergic receptors to catecholamines in hyperthyroidism
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may explain the increase in sympathetic activity [65–67]. More specifically, we showed a
sympathovagal imbalance in hyperthyroidism. Vagal inhibition was more intense than
increased sympathetic activity, with a greater decrease in HF power than LF power. As
expected, TP decreased markedly (cardiac vagal control) as HF is its main contributor—two-
thirds—whereas LF and VLF contribute one-third [12,68]. HRV is decreased mainly because
of a large decrease in vagal activity [12,68]. Then, RR intervals decreased in patients with
subclinical hyperthyroidism, and further decreased in overt hyperthyroidism. Moreover,
an increase in fT3 and fT4, and a decrease in TSH, were related to a decrease in RR intervals.
HRV parameters may indirectly reflect the severity of hyperthyroidism [58]. Subclinical
hyperthyroidism appears to be an intermediate cardiovascular state between euthyroidism
and overt hyperthyroidism, a continuum related to thyroid hormone excess [46,52]. An
increase in sympathetic activity seems to be the first modification of the sympathovagal bal-
ance, which may be due to the decrease in TSH [44,45,50,52,55,57]. However, these results
should be treated with caution because those studies only reported some selected HRV
parameters. This parasympathetic inhibition may be due to the action of thyroid hormones
on centers regulating autonomic functions [69,70] and on cardiac M2-muscarinic recep-
tors [66], and increased adrenergic reactivity may be due to the main effects of abnormal
TSH concentrations [53].

4.2. Clinical Implications

Decreased vagal tone and increased sympathetic activity in hyperthyroidism have
important clinical implications. Thyroid hormones play a role in arrhythmogenesis with a
risk of atrial fibrillation [71], which may be related to decreased HRV [72]. For example, a
high incidence of supraventricular arrhythmias has been reported in overt hyperthyroidism
women with very low HRV [58]. Increased sympathetic modulation and vagal inhibition
were observed before the onset of paroxysmal atrial fibrillation [73], which may explain
the increased prevalence of atrial fibrillation in these patients. A decreased HRV should
strengthen the idea of treating subclinical hyperthyroidism [74]. However, early antithyroid
therapy remains contradictory [44,74]. Indeed, if antithyroid treatment allows reversibility
of HRV abnormalities, it would constitute an additional argument to treat subclinical
hyperthyroidism in order to avoid rhythmic complications in these patients. Patients with
decreased vagal tone are more susceptible to cardiovascular disease [75,76] with increased
cardiac morbidity and mortality without apparent heart muscle damage [49]. It has also
been shown that decreased TP predicts an increased risk of sudden cardiac death [77]
and total cardiac mortality [78], that decreased LF is a strong predictor of sudden death
independently of other variables [74], and that decreased VLF is an indicator of increased
cardiac mortality in patients after myocardial infarction [79,80]. These data suggest that
HRV parameters may be a marker of increased mortality in hyperthyroid patients. Physical
activity and hyperthyroidism have the same effects on HRV, i.e., a concomitant sympathetic
activation and decreased vagal tone [81]. Hence, many hyperthyroid patients are intolerant
to exercise due to a reduced ability to increase cardiac output [82,83], in addition to the
usual musculoskeletal manifestations of hyperthyroidism [84].

4.3. Other Variables Related to HRV in Hyperthyroidism

Age was associated with higher RR, TP, HFnu, and lower LFnu and LF/HF ratio.
Thus, age was linked with an increased HRV in hyperthyroidism. However, in the gen-
eral population, older age is associated with a decrease in HRV [85,86] due to decreased
parasympathetic regulation [87]. Our results may be explained by the fact that, in our
meta-analysis, younger patients had more severe hyperthyroidism and a high prevalence
of Graves’ disease [88]. We demonstrated that an increase in systolic blood pressure was
associated with lower RMSSD, i.e., a decrease in parasympathetic activity. No study has
previously evaluated this relationship in hyperthyroidism. Conflicting results have been
reported in the general population, with elevated blood pressure associated with either
an increase [89] or a decrease [90] in HRV. It has also been suggested that decreased au-
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tonomic nerve function precedes the development of clinical hypertension [91]. We also
demonstrated that increased BMI was associated with higher RR intervals, TP, LF, HF and
VLF power, and lower LF/HF ratio, i.e., increasing HRV with increased parasympathetic
activity. However, an increase in BMI is associated with lower HRV [92,93]. Hyperthyroid
patients often presented a weight loss, resulting in a significantly lower mean BMI than
healthy controls. In malnourished subjects, there is a decrease in HFnu with an increase in
LFnu and LF/HF ratio [94]; hence, normalization of BMI may improve HRV. BMI does not
distinguish between lean and fat tissue [95,96]. Interestingly, HRV may be more related
to body composition than to BMI, and especially to body fat [97,98], which is lowered in
hyperthyroid patients [99].

4.4. Limitations

All meta-analyses have limitations, including those of the individual studies from
which data are obtained, and are theoretically subject to publication bias [100]. Although
our meta-analysis was based on a moderate number of studies, the use of broader keywords
in the search strategy limited the number of missing studies [101]. The quality of the studies
varied despite our rigorous criteria for selecting studies in the meta-analysis [43,57,58].
Indeed, most studies were cross-sectional, and only a single RCT was included [43], preclud-
ing robust conclusions for our meta-analyses [101]. Data collection and inclusion/exclusion
criteria, although similar, were not identical in each study, which may have affected our
results [102]. In addition, all studies except one [52] were monocentric, limiting the general-
izability of our results [102]. We limited the influence of extreme results and heterogeneity
by exclusion of outliers [103,104]. Moreover, declarative data from studies are a source
of putative bias [100]. Studies also differed in measurement conditions, such as in the
duration of recording of HRV parameters [48,58]. We did not undertake meta-analysis
of non-linear assessments of HRV, but non-linear assessment has been poorly studied in
hyperthyroidism and is controversial; its results are non-proportional, maximizing minimal
or major changes [105,106]. The etiology and duration of hyperthyroidism were poorly
reported, precluding further analysis. Similarly, the lack of data on spectral analysis of
subclinical hyperthyroidism did not allow conclusions to be drawn on the type and degree
of sympathovagal imbalance.

5. Conclusions

HRV is markedly decreased in hyperthyroid patients. Increased sympathetic and
decreased parasympathetic activity may be explained by the deleterious cardiovascular
effects of thyroid hormones. The benefits of HRV assessment in the evaluation and moni-
toring of the severity of hyperthyroidism should be further investigated, given its potential
as a noninvasive, reliable, and pain-free measurement.
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